![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Раздел 3.Имитационное моделирование как метод исследования систем большой сложностиРаздел 3 (краткое содержание).
1.1. Основные понятияИмитационное моделирование основано на воспроизведении с помощью ЭВМ развернутого во времени процесса функционирования системы с учетом взаимодействия с внешней средой. Основой всякой имитационной модели (ИМ) является:
Условно имитационную модель можно представить в виде действующих, программно (или аппаратно) реализованных блоков. На рис. 3.1. показана структура имитационной модели. Блок имитации внешних воздействий (БИВВ) формирует реализации случайных или детерминированных процессов, имитирующих воздействия внешней среды на объект. Блок обработки результатов (БОР) предназначен для получения информативных характеристик исследуемого объекта. Необходимая для этого информация поступает из блока математической модели объекта (БМО). Блок управления (БУИМ) реализует способ исследования имитационной модели, основное его назначение – автоматизация процесса проведения ИЭ. Рис. 3.1. Целью имитационного моделирования является конструирование ИМ объекта и проведение ИЭ над ней для изучения закона функционирования и поведения с учетом заданных ограничений и целевых функций в условиях иммитации и взаимодействия с внешней средой. К достоинствам метода имитационного моделирования могут быть отнесены:
Процесс функционирования сложной системы можно рассматривать как смену ее состояний, описываемых ее фазовыми переменными Z1(t), Z2(t), … Zn(t) в n – мерном пространстве. Задачей имитационного моделирования является получение траектории движения рассматриваемой системы в n – мерном пространстве (Z1, Z2, … Zn), а также вычисление некоторых показателей, зависящих от выходных сигналов системы и характеризующих ее свойства. В данном случае “движение” системы понимается в общем смысле – как любое изменение, происходящее в ней. Известны два принципа построения модели процесса функционирования систем: 1.2.1.
Принцип Для систем, где случайность
является определяющим фактором, принцип
Принцип 1.2.2.
Принцип особых состояний (принцип
Принцип особых состояний
отличается от принципа Примерами систем, имеющих особые состояния, являются системы массового обслуживания. Особые состояния появляются в моменты поступления заявок, в моменты освобождения каналов и т.д. Для таких систем
применение принципа В практике использования имитационного моделирования описанные выше принципы при необходимости комбинируют. 1.2.3
пример применения принципа На рис. 3.2. приведена аналоговая схема дифференцирующего фильтра. Рис. 3.2. Процесс, происходящий в фильтре, описывается дифференциальным уравнением: В уравнении: K- коэффициент усиления, х(t) – входной сигнал. Доказано, что Преобразуем математическую
модель фильтра (1) к виду, позволяющему применить принцип Задав начальное условие Z(t0)=Z0 можно построить траекторию процесса, происходящего в фильтре, с целью получения текущего значения производной любой детерминированной функции x(t), подаваемой на вход. Если Вы хотите подробнее узнать как это происходит, нажмите на клавишу ДА. 1.2.4. Пример применения принципа особых состояний. Рассмотрим магазин мелких подарков “Виртуальный”. В магазине работает один продавец. Требуется имитировать работу магазина с целью изучения перспектив его развития. Из предварительного обследования получена информация, что интервал времени между двумя последовательными приходами покупателей в магазине имеет равномерный закон распределения в интервале ( 1,10 ). Время обслуживания покупателей в магазине также распределено равномерно в интервале (1 ,6 ). 1.2.5. Основные методы имитационного моделирования. Основными методами имитационного моделирования являются: аналитический метод, метод статического моделирования и комбинированный метод (аналитико-статистический) метод. Аналитический метод применяется для имитации процессов в основном для малых и простых систем, где отсутствует фактор случайности. Например, когда процесс их функционирования описан дифференциальными или интегродифференциальными уравнениями. Метод назван условно, так как он объединяет возможности имитации процесса, модель которого получена в виде аналитически замкнутого решения, или решения полученного методами вычислительной математики. Метод статистического моделирования первоначально развивался как метод статистических испытаний (Монте-Карло). Это – численный метод, состоящий в получении оценок вероятностных характеристик, совпадающих с решением аналитических задач (например, с решением уравнений и вычислением определенного интеграла). В последствии этот метод стал применяться для имитации процессов, происходящих в системах, внутри которых есть источник случайности или которые подвержены случайным воздействиям. Он получил название метода статистического моделирования. В параграфах 2-5 данного раздела излагается суть этого метода. Комбинированный метод (аналитико-статистический) позволяет объединить достоинства аналитического и статистического методов моделирования. Он применяется в случае разработки модели, состоящей из различных модулей, представляющих набор как статистических так и аналитических моделей, которые взаимодействуют как единое целое. Причем в набор модулей могут входить не только модули соответствующие динамическим моделям, но и модули соответствующие статическим математическим моделям. |
![]() ![]() ![]() |